Advertisement

We need your help now

Support from readers like you keeps The Journal open.

You are visiting us because we have something you value. Independent, unbiased news that tells the truth. Advertising revenue goes some way to support our mission, but this year it has not been enough.

If you've seen value in our reporting, please contribute what you can, so we can continue to produce accurate and meaningful journalism. For everyone who needs it.

Explainer: Here's the problem with the Leaving Cert honours maths paper

Warning: the following article contains trigonometry.

AROUND 15,000 STUDENTS were expected to take the Higher Level papers in the Maths Leaving Cert – perhaps hoping to get 25 valuable bonus points for the CAO race later this summer.

All of them were expected to take Question 8, worth 30 marks – the one which has caused minor outrage around the country because of a printing blunder.

The error meant one question had multiple correct answers, while at the same time also being technically impossible to solve.

Here’s how.

The question

A port P is directly east of a port H. To sail from H to P, a ship first sails 80 km, in the direction shown in the diagram, to the point R before turning through the angle of 124° and sailing 110 km directly to P.

(i) Find the distance from R to HP.

In other words: let’s pretend you’re the captain of a ship which is currently docked at Port H. You’ll shortly be setting off to Port P – but you’re not going to be travelling directly there: you’ll need to take a detour, going off to one side to visit a dock R in between.

You’re told that if you drew a line between H to R, and then from R to P, the angle at R would be 124°. You’re also told that it’s 80 kilometres from H to R, and 110 kilometres from R to P.

You’re also told – incorrectly - that if you drew straight lines between H and P, and H and R, the angle between them would be 36°. (Look very closely – you’ll see that the width of the angle isn’t explicitly described in the text, and the figure is only written into the diagram.)

You’re asked to work out the distance between R and the straight line which joins H and P.

Alarm bells

From the off, the inclusion of four pieces of information is the sort of thing that should warrant some alarm bells, according to Eamonn Toland of TheMathsTutor.ie, who has put together a walk-through video showing how the question was botched.

Ordinarily for a trigonometry problem you’ll be given three pieces of data – with the length of one side and the width of the two angles at either end, or the length of two lines and the width of the angle in between them.

Because the three angles in a triangle will always add up to 180°, and because you can use basic trigonometry to work out the length of the other sides, you should only ever be given three pieces of information.

Any more than that – particularly at higher level – and there ought to be a suspicion that maybe the pre-provided information is too good to be true.

First steps

Remember that the three angles of a triangle would always add to up to 180° – so, having been given the width of two angles, you can very easily work out the width of the third by adding the first two together, and subtracting your answer from 180°.

In this case, you can add 124° and 36° to get 160° – meaning the other angle would, by definition, be 20°.

So - as you can see in this screen grab from Eamonn's video - you can simply draw a line between the angle R and the line HP, which then splits your large, shapeless ('scalene') triangle into two right-angled triangles. (For the sake of explanation, let's mark a dot at the spot on HP where you draw the line, and call it 'A'.)

This makes it trivial to figure out the length of the line between R and A - because you can use basic trigonometry to work it out.

You only need to decide which triangle you're going to use - whether it's the one between points H, A and R, or the one between P, A and R.

If you use use HAR, you can work out the length of the line AR with the 'sine formula' (the sine of the angle is equal to the length of the opposite side, divided by the length of the hypotenuse) based on the angle at H - and you'll get an answer around 47km.

But! If you use triangle PAR, and work it out using the sine formula based on the angle at P, you'll get an answer of around 38km.

Each is a legitimate way of approaching the question - and because of the data the student has been given, each is a perfectly legitimate answer.

As Eamonn explains, a strong student might have found this question to be so basic that it was almost routine - so they might have double-checked their answer by working out the length of the line between A and R with both methods, and then become flustered by getting two perfectly valid results.

"It's a bit ironic that the more you know about maths, the more problems that this triangle will cause you," Eamonn succintly explains.

The problem is...

...that it's actually impossible to draw a triangle where two lines are as long as the paper says, and where the two angles are as wide as the paper says.

If you follow all of those instructions and try to draw a triangle - as Eamonn did - you get this:

If you're not told the width of the angle at H, it's much simpler to construct a triangle - you only need to draw a straight line between H and P:

As it happens, you can then apply some routine trigonometry to discover that the angle at H is not 36° at all - it's actually 33°, meaning the angle at P is 23° and not the 20° that students were (implicitly) told.

This, of course, actually changes the whole complexion of the question - because if the question was actually put as originally intended, and the student decided to answer it by splitting the triangle into two, they would have found the correct answer to be around 43 kilometres.

But what if you read the question properly?

Eamonn points out that the description given in the written part of the question didn't actually reflect the triangle drawn out beside it. The image above is his drawing of what a triangle would actually look like if it followed the written instruction.

The description talks about a ship turning at an angle of 124° - when in fact this would mean a turn far sharper than a right angle, leading to a triangle which can't possibly correspond to the instructions given.

It's more a case of sloppy wording on the part of the question setter rather than any critical error - but a thorough student who read every question diligently may well have been thrown by the disconnect between the words and the image, and become even more flustered as a result.

...and going on...

The question above is Part (a) of the botched question. This is Part (b):

The point T is directly east of the point R. | HT | = 110 km and | TP | = 80 km. Find | RT |.

In layman's terms: it turns out we also have to visit a dock at another location, T - which, as it happens, is exactly 110 km from H and exactly 80 km from P. Figure out the distance between R and T.

Most students will have noticed that the triangle between H, P and T is basically a mirror image of the original one between H, P and R - the distance between the two end points are still the same.

Here's what happens if you copy the triangle HPR (which we've shaded in pink) and paste it onto HPT:

Many students are likely to have treated this shape as a trapezoid with four corners - H, R, T and P - and borrowed some of the stuff they had learned from the first question.

This, crucially, would include the distance between R and the line HP - which, as we've seen, could be either 43km, 38km or 47km.

Having drawn a four-cornered shape with two parallel lines, they could then split the shape into three - consisting of two right-angled triangles with a rectangle in between:

Based on the information given to them in the first question, students should have been able to figure out that the distance between H and P was 170 kilometres. (Again, this is fairly basic trigonometry for an honours Leaving Cert paper.)

A Leaving Cert honours Maths student should see that the two triangles are identical - one is simply the mirror image of the other - and therefore the distance between R and T is the same as the length between H and P, minus the length of the two triangles (i.e. between H and A).

By now, students will know the length of two sides and the width of two angles in the triangle HAR - but if they use the wrong ingredients, plugging in the answers they got from the first question, they're going to get the wrong result again.

If the angle at H was 33°, as it should have been, the length of HA is 67km - meaning the distance between R and T is 36 kilometres - but if they were using the mistaken 36° figure, they will have found the length of HA to be 65km and then discovered RT to be 40km.

So what happens now?

The marking scheme for the question will have to reflect the fact that there were three possible answers for part (a) - and give full marks to anyone who may have gotten the wrong answer, but used a legitimate method to get there.

Similarly, anyone who used their legitimate answer for part (a) and plugged it into part (b) will also be accommodated.

Where things aren't so clear is what happens to the students who may have done enough work to get full marks - but who might have been flustered or flummoxed by the error, and spent extra time doing the question.

Q8 in total was worth 30 marks out of a possible 300 - so it was worth 10 per cent of the entire paper, and therefore would have been worth 15 minutes of a student's time. Indeed, the question would be worth 5 per cent of a pupil's total Maths grade - and five valuable CAO points.

It's easy to see how a diligent pupil checking their work could have spent far longer than 15 minutes poring over their answer, desperately trying to find an error that did not exist.

How that will be reflected is up to the chief examiner.

Read: Marking of Leaving Cert Maths papers ‘will reflect time lost by students’

Plus: Further errors in Leaving Cert maths exams highlighted

Readers like you are keeping these stories free for everyone...
A mix of advertising and supporting contributions helps keep paywalls away from valuable information like this article. Over 5,000 readers like you have already stepped up and support us with a monthly payment or a once-off donation.

Close
26 Comments
    Install the app to use these features.
    Mute BadDrivingIreland
    Favourite BadDrivingIreland
    Report
    Jun 12th 2013, 8:53 PM

    A massive fail for whoever wrote the question, and a massive A+ for gavan there on the explanation.

    311
    Install the app to use these features.
    Mute Shaun O' Higgins
    Favourite Shaun O' Higgins
    Report
    Jun 12th 2013, 8:50 PM

    Reading that hurts my head………

    219
    Install the app to use these features.
    Mute Yvonne O'Brien
    Favourite Yvonne O'Brien
    Report
    Jun 12th 2013, 9:44 PM

    Students had 15 minutes to complete this?? Took me longer to read the article I had to keep going back and reading lines again!

    175
    Install the app to use these features.
    Mute Eoin Sheehy
    Favourite Eoin Sheehy
    Report
    Jun 12th 2013, 10:00 PM

    In fairness that was an extremely long explanation, in the exam I took 10 minutes at most for that question, I ploughed on and luckily didn’t notice the mistake and get bogged down! Still it’s extremely frustrating that this is happening at all!

    92
    Install the app to use these features.
    Mute Conor Farrell
    Favourite Conor Farrell
    Report
    Jun 12th 2013, 9:34 PM

    Good jaysus Gavan. I did physics in college but after reading that I clearly need to go back to me times tables.

    79
    Install the app to use these features.
    Mute gareth mcmahon
    Favourite gareth mcmahon
    Report
    Jun 12th 2013, 9:52 PM

    Disgraceful this reached the exam in the first place. Great explainer though.

    62
    Install the app to use these features.
    Mute Martin Grehan
    Favourite Martin Grehan
    Report
    Jun 12th 2013, 11:18 PM

    People make mistakes and the whole point of mathematics is to teach students to solve problems, any student who actually knew what they were doing would have realised the error and been able to explain it. I’m not saying the error is acceptable but maths isn’t about getting the right answer, it’s about problem solving and often in the real world problems aren’t perfect, so fixing something that’s wrong is also a key skill.

    35
    Install the app to use these features.
    Mute Tony Cleere
    Favourite Tony Cleere
    Report
    Oct 13th 2013, 7:25 PM

    Good point! !

    1
    Install the app to use these features.
    Mute E
    Favourite E
    Report
    Jun 12th 2013, 9:22 PM

    I tried to follow the explanation. I really did. But it hurt my head too much. Really wish I’d have listened more in Maths class. Most of the explanation went over my head… probably why I did Ordinary Level. Good ole Simpson’s Rule gave me a few marks in one of the papers.

    49
    Install the app to use these features.
    Mute Alison Tait
    Favourite Alison Tait
    Report
    Jun 12th 2013, 10:31 PM

    I did ordinary level as well…..I don’t think Simpson had a rule when I did it, or if he did I can’t remember it!!!

    13
    Install the app to use these features.
    Mute Martin Grehan
    Favourite Martin Grehan
    Report
    Jun 12th 2013, 11:16 PM

    Simpson’s Rule involves using parabolas to estimate the area under a curve…..it’s sexy shit.

    28
    Install the app to use these features.
    Mute Gaa Nut
    Favourite Gaa Nut
    Report
    Jun 12th 2013, 9:17 PM

    Fantastic explanation.

    40
    Install the app to use these features.
    Mute Dave Caplice
    Favourite Dave Caplice
    Report
    Jun 12th 2013, 11:47 PM

    Now that induced some terrible flashbacks of being at the board,chalk in hand,sweating..

    40
    Install the app to use these features.
    Mute Sean C
    Favourite Sean C
    Report
    Jun 13th 2013, 12:23 AM

    Were you the teacher or the student?
    (Joking. Seriously, just joking.)

    35
    Install the app to use these features.
    Mute Eamonn Toland
    Favourite Eamonn Toland
    Report
    Jun 13th 2013, 1:26 AM

    Thanks for using our video Gavan! Hope it helps everyone understand the deal with this question. If anyone has any queries or needs further clarification, just let us know :-)

    38
    Install the app to use these features.
    Mute Alan McNamara
    Favourite Alan McNamara
    Report
    Jun 12th 2013, 9:49 PM

    Can I phone a friend

    34
    Install the app to use these features.
    Mute Owen Slattery
    Favourite Owen Slattery
    Report
    Jun 12th 2013, 11:50 PM

    Why couldn’t somebody from the SEC simply attempt and proof-
    read the exam paper before printing thousands of copies with mistakes? I must be missing something here

    25
    Install the app to use these features.
    Mute David O Brien
    Favourite David O Brien
    Report
    Jun 13th 2013, 7:38 AM

    Mums and Dads with honours leaving Maths from years ago must be aghast at such a childish simple question – Project maths is a trendy name for a dumbed down curriculum.

    14
    Install the app to use these features.
    Mute Lou Brennan
    Favourite Lou Brennan
    Report
    Jun 13th 2013, 10:29 AM

    Answer = Stanley blade.

    10
    Install the app to use these features.
    Mute Niall Madden
    Favourite Niall Madden
    Report
    Jun 13th 2013, 12:31 AM

    Fair play to The Journalfor such a detailed and (mostly) correct article about this, and for pointing out that, the main error aside, the text of the problem was different from the diagram (the boat actually changed course by 56 degrees). By the way, it is not “by definition” that the angles of a triangle add up to 180 degrees.

    8
Submit a report
Please help us understand how this comment violates our community guidelines.
Thank you for the feedback
Your feedback has been sent to our team for review.
JournalTv
News in 60 seconds